Making Sense of Radians

Jennifer Silverman www.proradian.net

Radians as Proportionality Constants

1. Fill-in all of the boxes as you review what it means to be **proportional**.

Two polygons are similar if their corresponding angles are

______, and their corresponding sides are .

2.

In this example, ABCD ≈ EFGH. That means:

$$\angle A \simeq \angle \square$$
, $\angle \square \simeq \angle G$, $\angle \square \simeq \angle F$, and $\angle D \simeq \angle \square$

and
$$\frac{\Box}{AB} = \frac{FG}{\Box} = \frac{\Box}{CD} = \frac{HE}{\Box} = \frac{2}{1}$$

- 3. Here are other ways to show that the sides are proportional.
 - EF = 2 , = 2BC, = 2CD, and HE = 2
 - EFGH is the result of a dilation of ABCD, with a scale factor of
 - Since the line passes through the origin, this graph shows that the relationship is **direct variation**. Saying that two quantities vary directly means the same as saying that they are proportional. The slope is the **constant of proportionality**; in this case, it is 2.

4. Use the applet to create 3 different tables, each using a different θ .

	θ =	
r	S	s/r

	θ =		
r	S	s/r	

θ =		
r	S	s/r

5. Make 3 quick graphs.

6. For each θ , is arc length (s) proportional to radius (r)? How do you know?

7. How is the slope of each line related to the variables θ , r, and s?