Making Sense of Radians

Jennifer Silverman www.proradian.net

A New Protractor and a New Measure!

Angle measure of ______°

Angle measure of _____°

Angle measure of ______°

3. Measure the missing angles with **ProRadian1**.

Sum of angle measures = _____

Sum of angle measures = _____

4. Explore the applet at http://bit.ly/18KYWXT.

Each time the protractor rolled a distance equal to its radius, it turned 1 radian. This may be a new unit of angle measure for us, but it is the one used most by mathematicians.

5. Use ProRadian1 to measure the angles below.

Write 3 equations that connect the values of the arc length, the radius, and the angle for each.

$$6.48 =$$

6. Write 3 **general** rules that connect the arc length (s), the radius (r), and the angle (θ).

7. Use your rules to predict the missing values.

a.
$$\theta =$$

d. $\theta =$

e. s = _____

